Machine Learning Operations (MLOps)
Teknologi:
Machine LearningLevel: Mahir
Siswa Terdaftar
Teknologi:
Machine LearningLevel: Mahir
Siswa Terdaftar
Kelas ini merupakan langkah ke-enam Anda untuk menjadi Machine Learning Engineer.
MLOps merupakan sebuah best practice untuk melakukan standardisasi terhadap proses pengembangan sistem machine learning dan pengoperasiannya di sistem produksi. Pada lingkup industri, standaridisasi terhadap keseluruhan proses ini merupakan kunci utama dalam menghasilkan sistem machine learning yang bersifat reliable, scalable, adaptable, dan maintainable. Selain itu, penerapan MLOps dapat membantu kita dalam mencegah resiko munculnya technical debt dan memastikan akuntabilitas dari sistem yang dibuat.
Kelas ini merupakan langkah ke-enam Anda untuk menjadi Machine Learning Engineer.
Peralatan Belajar
Spesifikasi minimal perangkat:
Prosesor
Intel Dual Core (Rekomendasi Core i3 ke atas)
Tools yang dibutuhkan untuk belajar:
Google Colaboratory
Lihat semua peralatan belajar
Lihat semua peralatan belajarKelas ini membutuhkan spesifikasi perangkat seperti berikut:
RAM
4GB (Rekomendasi 8GB)
Layar
1366 x 768 (Rekomendasi Full HD 1920 x 1080)
Sistem Operasi
Windows, Linux, MacOS
Prosesor
Intel Dual Core (Rekomendasi Core i3 ke atas)
Kelas ini membutuhkan beberapa tools berikut:
Google Colaboratory
Teks Editor (Notepad++) atau IDE (PyCharm,dll)
Command Line (Terminal atau cmd)
Web Browser (Google Chrome atau Mozilla Firefox)
Metode Ajar
Lihat semua metode ajar
Lihat semua metode ajarKontributor
2Curriculum Developer yang membangun kelas ini:
Rahmat Fajri
Data & Machine Learning Engineer
Mochamad Rafy Ardhanie
Curriculum Developer at Dicoding Indonesia
Reviewer
7Code Reviewer yang akan me-review tugas dan kode Anda:
Yusuf Sugiono
Fullstack Developer di PT Prima Visi Globalindo
• Google Cloud Certified Associate Cloud Engineer
• Google Cloud Certified Cloud Digital Leader
• AWS Certified Cloud Practitioner
• Alumni Bangkit 2021 - Cloud Computing Learning Path
• Alumni SIB Dicoding Cycle 1 - Machine Learning & FrontEnd Learning Path
Feel free to connect with me on LinkedIn
Ahmad Zein Al Wafi
Machine Learning Architect
I am a Machine Learning Architect with extensive experience in designing and implementing machine learning solutions aimed at solving complex business challenges. Over the past three years, I have led a variety of technology projects, serving both as a Tech Lead and Solution Architect, with a focus on developing scalable, efficient systems leveraging machine learning.
My expertise spans across multiple domains, including predictive analytics, computer vision, and natural language processing, enabling the development of innovative, multidimensional solutions that deliver real-world impact. I am passionate about sharing knowledge and empowering teams to identify and solve problems using optimal, data-driven approaches.
I strongly believe that the right technology combined with active collaboration can create substantial value for any project or organization.
Rahmat Fajri
Data & Machine Learning Engineer
TensorFlow Developer Certified
Maulana Muhammad
External Code Reviewer at Dicoding Indonesia
Machine Learning Enthusiast
Lihat semua kontributor dan reviewer
Lihat semua kontributor dan reviewerKontributor kelas
Curriculum Developer yang membangun kelas ini:
Rahmat Fajri
Data & Machine Learning Engineer
Mochamad Rafy Ardhanie
Curriculum Developer at Dicoding Indonesia
Tim Reviewer
Code Reviewer yang akan me-review tugas dan kode Anda:
Yusuf Sugiono
Fullstack Developer di PT Prima Visi Globalindo
• Google Cloud Certified Associate Cloud Engineer
• Google Cloud Certified Cloud Digital Leader
• AWS Certified Cloud Practitioner
• Alumni Bangkit 2021 - Cloud Computing Learning Path
• Alumni SIB Dicoding Cycle 1 - Machine Learning & FrontEnd Learning Path
Feel free to connect with me on LinkedIn
Ahmad Zein Al Wafi
Machine Learning Architect
I am a Machine Learning Architect with extensive experience in designing and implementing machine learning solutions aimed at solving complex business challenges. Over the past three years, I have led a variety of technology projects, serving both as a Tech Lead and Solution Architect, with a focus on developing scalable, efficient systems leveraging machine learning.
My expertise spans across multiple domains, including predictive analytics, computer vision, and natural language processing, enabling the development of innovative, multidimensional solutions that deliver real-world impact. I am passionate about sharing knowledge and empowering teams to identify and solve problems using optimal, data-driven approaches.
I strongly believe that the right technology combined with active collaboration can create substantial value for any project or organization.
Rahmat Fajri
Data & Machine Learning Engineer
TensorFlow Developer Certified
Maulana Muhammad
External Code Reviewer at Dicoding Indonesia
Machine Learning Enthusiast
Celvine Adi Putra
Yusuf Sugiono
Fullstack Developer di PT Prima Visi Globalindo
• Google Cloud Certified Associate Cloud Engineer
• Google Cloud Certified Cloud Digital Leader
• AWS Certified Cloud Practitioner
• Alumni Bangkit 2021 - Cloud Computing Learning Path
• Alumni SIB Dicoding Cycle 1 - Machine Learning & FrontEnd Learning Path
Feel free to connect with me on LinkedIn
Rifky Bujana Bisri
Undergraduate Student at University of British Columbia
Ahmad Zein Al Wafi
Machine Learning Architect
I am a Machine Learning Architect with extensive experience in designing and implementing machine learning solutions aimed at solving complex business challenges. Over the past three years, I have led a variety of technology projects, serving both as a Tech Lead and Solution Architect, with a focus on developing scalable, efficient systems leveraging machine learning.
My expertise spans across multiple domains, including predictive analytics, computer vision, and natural language processing, enabling the development of innovative, multidimensional solutions that deliver real-world impact. I am passionate about sharing knowledge and empowering teams to identify and solve problems using optimal, data-driven approaches.
I strongly believe that the right technology combined with active collaboration can create substantial value for any project or organization.
Rahmat Fajri
Data & Machine Learning Engineer
TensorFlow Developer Certified
Maulana Muhammad
External Code Reviewer at Dicoding Indonesia
Machine Learning Enthusiast
Mochamad Rafy Ardhanie
Curriculum Developer at Dicoding Indonesia
Celvine Adi Putra
Ribuan siswa sukses belajar di Dicoding Academy. Apa kata mereka? Berikut adalah testimoni asli mereka.
Lihat semua testimoni
Lihat semua testimoniBerikut adalah beberapa pertanyaan yang paling sering ditanyakan.
Materi yang akan Anda pelajari pada kelas ini.
Memahami HAKI, mekanisme belajar, forum diskusi, glosarium, dan daftar referensi.
2 Menit
10 Menit
10 Menit
10 Menit
Forum Diskusi
20 Menit
Glosarium
10 Menit
Daftar Referensi
5 Menit
Mengetahui konsep dasar pengembangan dan pengoperasian sistem machine learning di industri.
Tantangan Pengoperasian Machine Learning dalam Sistem Produksi
20 Menit
Definisi Machine Learning Operations (MLOps)
25 Menit
Gambaran Life Cycle Pengembangan Sistem Machine Learning dalam Skala Industri
25 Menit
Menentukan Cakupan Proyek Machine Learning
25 Menit
Manajemen Data
25 Menit
Pengembangan Model Machine Learning
25 Menit
Deployment dan Monitoring Sistem Machine Learning
25 Menit
Pengenalan Machine Learning Pipeline
20 Menit
Rangkuman Pengenalan Machine Learning Operations
15 Menit
Kuis Pengenalan Machine Learning Operations
5 Menit
Memahami konsep dan cara membuat komponen pengolahan data dalam machine learning pipeline menggunakan TFX.
Pengenalan Proses Pengolahan Data dalam Machine Learning Pipeline
20 Menit
Data Ingestion
20 Menit
Data Validation
25 Menit
Data Preprocessing
25 Menit
Pengenalan Tools Pengolahan Data dalam Machine Learning Pipeline
30 Menit
Pengenalan MetadataStore
20 Menit
Latihan Pembuatan Komponen Pengolahan Data dalam Machine Learning Pipeline
60 Menit
Pengenalan Tools Lanjutan dalam Pengolahan Data
30 Menit
Rangkuman Pengolahan Data dalam Machine Learning Pipeline
15 Menit
Kuis Pengolahan Data dalam Machine Learning Pipeline
5 Menit
Memahami teori dan cara membuat komponen pengembangan dan validasi model dalam machine learning pipeline menggunakan TFX.
Pengenalan Proses Pengembangan dan Validasi Model Machine Learning
20 Menit
Pengembangan Model
25 Menit
Analisis dan Validasi Model
25 Menit
Menginterpretasi Model
25 Menit
Pengenalan Tools Pengembangan dan Validasi Model dalam Machine Learning Pipeline
30 Menit
Latihan Pembuatan Komponen Pengembangan dan Validasi Model dalam Machine Learning Pipeline
60 Menit
Pengenalan Tools Lanjutan dalam Pengembangan dan Validasi Model
25 Menit
Rangkuman Pengembangan dan Validasi Model Machine Learning
15 Menit
Kuis Pengembangan dan Validasi Model Machine Learning
5 Menit
Memahami prinsip dan cara menerapkan model machine learning dalam sistem produksi.
Pengenalan Model Deployment
30 Menit
Manajemen Model dan Data Version
20 Menit
Pengenalan Model Serving
30 Menit
Monitoring & Feedback Loop
30 Menit
Latihan Membuat Model Serving Menggunakan Flask
45 Menit
Latihan Penggunaan TensorFlow Serving
45 Menit
Latihan Model Deployment
40 Menit
Rangkuman Penerapan Model Machine Learning dalam Sistem Produksi
15 Menit
Kuis Penerapan Model Machine Learning dalam Sistem Produksi
5 Menit
Menguji pemahaman peserta dalam membuat machine learning pipeline menggunakan TensorFlow Extended (TFX) dengan menerapkan kriteria-kriteria yang telah ditentukan
Proyek Pengembangan Machine Learning Pipeline
400 Menit
Mampu menerapkan prinsip clean code dalam bahasa pemrograman Python untuk menghasilkan kode yang sesuai dengan standar industri
Pengenalan Python Clean Code
20 Menit
Style Guide
30 Menit
Modular Code
25 Menit
Refactoring Code
30 Menit
Documentation
25 Menit
Pengenalan Linter dan Code Formatter
20 Menit
Latihan Refactoring Code
50 Menit
Rangkuman Python Clean Code
15 Menit
Kuis Python Clean Code
5 Menit
Mengetahui praktek pengembangan dan pengoperasian sistem machine learning menggunakan komputasi cloud
Tahap Penentuan Cakupan Proyek
20 Menit
Pembuatan Pipeline Component
60 Menit
Menjalankan Pipeline Component Menggunakan Pipeline Orchestrator
50 Menit
Menjalankan Model Machine Learning di Heroku
50 Menit
Monitoring Model Machine Learning
50 Menit
Rangkuman Latihan Pertama Pengembangan dan Pengoperasian Sistem Machine Learning
15 Menit
Kuis Latihan Pertama Pengembangan dan Pengoperasian Sistem Machine Learning
5 Menit
Mengetahui praktek pengembangan dan pengoperasian sistem machine learning menggunakan komputasi cloud pada Google Cloud Platform
Pengenalan Google Cloud Platform
35 Menit
Pengenalan Vertex AI
25 Menit
Latihan Penggunaan AutoML-Training Model
60 Menit
Latihan Penggunaan Custom-Training Model
50 Menit
Latihan Membuat dan Menjalankan end-to-end Machine Learning Pipeline Menggunakan Vertex AI Pipeline
55 Menit
Rangkuman Latihan Kedua Pengembangan dan Pengoperasian Sistem Machine Learning
15 Menit
Kuis Latihan Kedua Pengembangan dan Pengoperasian Sistem Machine Learning
5 Menit
Ujian akhir yang harus ditempuh untuk lulus dari kelas ini.
Rangkuman Kelas
28 Menit
Ujian Akhir Kelas
60 Menit
Proyek akhir yang harus diselesaikan untuk lulus dari kelas ini.
Proyek Pengembangan dan Pengoperasian Sistem Machine Learning
480 Menit